INITIAL SAFETY FACTOR ASSESSMENT

Chesapeake Energy Center CCR Surface Impoundment: Bottom Ash Pond

Submitted To: Chesapeake Energy Center
2701 Vepco Street
Chesapeake, VA 23323

Submitted By: Golder Associates Inc.
2108 W. Laburnum Avenue, Suite 200
Richmond, VA 23227

April 2018	 Project No. 13-00193
Table of Contents

1.0 Certification .. 1
2.0 Introduction .. 2
3.0 Slope Stability Assessment Methodology .. 2
 3.1 Normal Pool Storage.. 2
 3.2 Maximum Pool Surcharge.. 3
 3.3 Seismic Loading Conditions (Pseudostatic)... 3
 3.4 Post-Earthquake Liquefaction Loading Conditions.. 3
 3.5 Rapid Drawdown Conditions.. 3
4.0 Slope Stability Assessment Results... 4
5.0 Conclusion ... 4
6.0 References... 5

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scenario A – Existing Conditions</td>
</tr>
<tr>
<td>2</td>
<td>Scenario B – Post-Closure Conditions</td>
</tr>
</tbody>
</table>

Attachments

<table>
<thead>
<tr>
<th>Attachment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Material Properties Calculation Package</td>
</tr>
<tr>
<td>2</td>
<td>Seismic Hazard Calculation Package</td>
</tr>
<tr>
<td>3</td>
<td>Liquefaction Assessment Calculation Package</td>
</tr>
</tbody>
</table>
1.0 CERTIFICATION

This Initial Safety Factor Assessment for the Chesapeake Energy Center’s Bottom Ash Pond was prepared by Golder Associates Inc. (Golder). The document and Certification/Statement of Professional Opinion are based on and limited to information that Golder has relied on from Dominion and others, but not independently verified, as well as work products produced by Golder.

On the basis of and subject to the foregoing, it is my professional opinion as a Professional Engineer licensed in the Commonwealth of Virginia that this document has been prepared in accordance with good and accepted engineering practices as exercised by other engineers practicing in the same discipline(s), under similar circumstances, at the same time, and in the same locale. It is my professional opinion that the document was prepared consistent with the requirements of the United States Environmental Protection Agency’s “Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments,” published in the Federal Register on April 17, 2015, with an effective date of October 19, 2015 (40 CFR §257.73(e)), as well as with the requirements in §257.100 resulting from the EPA’s “Hazardous and Solid Waste Management System: Disposal of Coal Combustion Residuals From Electric Utilities; Extension of Compliance Deadlines for Certain Inactive Surface Impoundments; Response to Partial Vacatur” published in the Federal Register on August 5, 2016 with an effective date of October 4, 2016 (40 CFR §257.100).

The use of the word “certification” and/or “certify” in this document shall be interpreted and construed as a Statement of Professional Opinion, and is not and shall not be interpreted or construed as a guarantee, warranty, or legal opinion.

Daniel McGrath
Print Name

Daniel McGrath
Associate and Senior Consultant
Title

4/12/18
Date
2.0 INTRODUCTION

This Initial Safety Factor Assessment provides Golder’s stability evaluation of the dike surrounding the Bottom Ash Pond (BAP) at Virginia Electric and Power Company d/b/a Dominion Energy Virginia’s Chesapeake Energy Center (CEC) in Chesapeake, VA as it relates to the requirements in the USEPA’s 2015 Final Rule on the Disposal of Coal Combustion Residuals (CCR; EPA Rule). Golder analyzed both current and proposed future configurations of the BAP. According to section § 257.73(e) of the rule, stability of earth structures must be assessed under four loading conditions. The four loading conditions include:

- Maximum Pool Storage (§ 257.73(e)(i))
- Maximum Pool Surcharge (§ 257.73(e)(ii))
- Seismic Loading Conditions (§ 257.73(e)(iii))
- Post-Seismic Liquefaction Conditions (when liquefaction susceptible materials are present; § 257.73(e)(iv)).

3.0 SLOPE STABILITY ASSESSMENT METHODOLOGY

Stability safety factors were evaluated for each of the loading scenarios using the computer program SLIDE 7.0 Version 7.031 (2018). As required by the EPA rule, a general limit equilibrium (GLE) method (Morgenstern and Price) was used to calculate factors of safety, using the software program SLIDE. The factor of safety is calculated by dividing the resisting forces by the driving forces along the critical slip surface.

Stability was evaluated along six cross-section as shown in Figure 1. Subsurface stratigraphy at each cross-section was developed from cone penetration tests (CPTs) completed during Golder’s subsurface exploration in December 2017 and geotechnical data reported in Schnabel’s February 2010 report titled “Geotechnical Engineering Study, Chesapeake Energy Center, Stability Evaluation of the Bottom Ash Pond and Sedimentation Pond Dikes” and July 2011 report titled “Geotechnical Engineering Study, Chesapeake Energy Center, Phase 1 Evaluation of Perimeter Dikes of the Columbia Gas Property and Dry Ash Landfill.” Similarly, material properties were developed for the dike, foundation materials, and impounded materials from these resources. The Material Properties Calculation Package (Attachment 1) provides details on Golder’s geotechnical exploration and evaluation of geotechnical data.

Two configurations of the BAP were analyzed for stability. The first configuration models conditions as they currently exist. The second models conditions as they will be after CCR removal efforts are completed. Specifically, the current closure plan indicates approximately five feet of material in the BAP will be excavated to elevation 9 ft-msl.

3.1 Normal Pool Storage

Since the BAP is normally dry (no surface water), the water level for this evaluation was set to elevation 7.5 feet mean sea level (ft-msl) for normal-pool-storage-stability analyses. This level is below the existing CCR...
surface and is consistent with observed water levels in site groundwater monitoring wells and test pits dug in the BAP. After closure activities are completed, the water level is expected to remain below the bottom of the pond. However, Golder conservatively modeled the normal pool storage water level as elevation 7.5 ft-msl in both normal pool scenarios.

3.2 Maximum Pool Surcharge
For the maximum pool surcharge scenario, the peak water level within the BAP was calculated during the 1,000 year 24 hour rain event. This event was calculated to cause a temporary water level within the pond to approximately elevation 19 ft-msl for current conditions and 17 ft-msl for the future configuration. For further details, refer to the hydraulic and hydrology stormwater routing calculations presented in the Inflow Design Flood Control Plan (Golder 2018).

3.3 Seismic Loading Conditions (Pseudostatic)
Factors of safety for stability under seismic loading conditions were calculated based on the earthquake hazard corresponding to a probability of exceedance of 2% in 50 years (2,475 year return period). Golder used the Bray and Travasarou displacement-based seismic slope stability screening method to evaluate the seismic stability. For this method, a pseudo-static coefficient corresponding to an allowable displacement of six inches (15 cm) is typically used; however, this coefficient was calculated to be nearly zero due to the low seismic risk at CEC. In an effort to demonstrate an acceptable factor of safety, Golder conservatively used the coefficient for an allowable displacement of two inches (5 cm). The pseudo-static coefficient was calculated to be 0.01g. Details on the calculation of the pseudo-static coefficient are available in the Seismic Hazard Calculation Package (Attachment 2).

3.4 Post-Earthquake Liquefaction Loading Conditions
Golder completed an evaluation of the liquefaction susceptibility of the site soils and CCR materials as presented in the Liquefaction Assessment Calculation Package (Attachment 3). The calculated factor of safety against liquefaction is above 1.2 for all materials analyzed including dike soils and foundation soils. Thus, slope stability analyses evaluating the impact of liquefaction are not necessary. For more detail on liquefaction analysis, please refer to the Liquefaction Assessment Calculation Package.

3.5 Rapid Drawdown Conditions
Golder also considered the impacts of rapid drawdown of slopes facing the Elizabeth River as described in the § 257.73(d)(vii) of the USEPA CCR Rule. The mapped (FIRM zone AE) 100-year flood level in the Elizabeth River is elevation 8.5 ft-msl, indicating a maximum rise of 1.8 meters (5.9 feet) above mean water levels. Thus, dikes around the BAP are not expected to undergo rapid drawdown in excess of 5.9 feet. Impacts of such a drawdown event have been mitigated by armoring the toe of the slopes along the Elizabeth River. Therefore, additional rapid drawdown analyses are not necessary.
4.0 SLOPE STABILITY ASSESSMENT RESULTS

The tables below present the results of the slope stability analyses of the dike impounding the BAP at CEC. The first table shows the calculated factors of safety for existing conditions, while the second table lists the calculated factors of safety for the future conditions after closure of the BAP. For all cases analyzed, the calculated factors of safety are in excess of those required in Sections § 257.73(e)(i) to (iii) of the EPA Rule. The detailed stability result figures are available in the pages following this assessment.

Table 1: Scenario A – Existing Conditions

<table>
<thead>
<tr>
<th>Analysis Case</th>
<th>Normal Storage Pool</th>
<th>Max. Surcharge Pool</th>
<th>Seismic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Section</td>
<td>§ 257.73(e)(i)</td>
<td>§ 257.73(e)(ii)</td>
<td>§ 257.73(e)(iii)</td>
</tr>
<tr>
<td>Target Factor of Safety</td>
<td>1.5</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Cross-Sections</td>
<td>Factor of Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-A'</td>
<td>1.7</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>B-B'</td>
<td>1.9</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>C-C'</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>D-D'</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>E-E'</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>F-F'</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 2: Scenario B – Post-Closure Conditions

<table>
<thead>
<tr>
<th>Analysis Case</th>
<th>Normal Storage Pool</th>
<th>Max. Surcharge Pool</th>
<th>Seismic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Section</td>
<td>§ 257.73(e)(i)</td>
<td>§ 257.73(e)(ii)</td>
<td>§ 257.73(e)(iii)</td>
</tr>
<tr>
<td>Target Factor of Safety</td>
<td>1.5</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Cross-Sections</td>
<td>Factor of Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-A'</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
</tr>
<tr>
<td>B-B'</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>C-C'</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>D-D'</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>E-E'</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>F-F'</td>
<td>1.6</td>
<td>1.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

5.0 CONCLUSION

Golder evaluated the slope stability of the dikes impounding the Bottom Ash Pond at Dominion Energy Virginia’s Chesapeake Energy Center in accordance with the EPA CCR Rule. Specifically, the dikes surrounding the BAP were evaluated for stability in the four loading scenarios presented in section § 257.73(e) of the EPA Rule:

- Normal Pool Storage (§ 257.73(e)(i))
- Maximum Pool Surcharge (§ 257.73(e)(ii))
- Seismic Loading Conditions (§ 257.73(e)(iii))
- Post-Seismic Liquefaction Conditions (when liquefaction susceptible materials are present; § 257.73(e)(iv))

For each loading case, the dikes were calculated to meet the target factor of safety presented in the EPA rule.

6.0 REFERENCES

Golder (2018), Inflow Design Flood Control System Plan

Rocscience (2016), SLIDE Version 7.017.

FIGURE 1

Stability Analysis Cross Section Location Plan
NOTE
1. GOLDER CPTs located with hand-held GPS units (+/- 10 feet).
2. SCHNABEL BOREHOLE locations approximated from "GEOTECHNICAL ENGINEERING STUDY" documents.

REFERENCE
FIGURES A-1 – A-18

Existing Conditions Stability Assessment Results
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Stability Analysis

- **Method Name**: GLE/Morgenstern-Price
- **Min FS**: 1.5

SCALE: AS SHOWN
DATE: 3/14/2018
PROJECT: CEC BAP - Inactive Pond Demonstration
TITLE: Section A-A
CLIENT: Dominion Energy
FIGURE: A - 1
CEC BAP - Inactive Pond Demonstration

Section B-B
Long Term, Normal Storage Pool

Dominion Energy

Material Name	Color	Unit Weight (lbs/ft³)	Strength Type	Cohesion (psf)	Phi (deg)
Ponded Fill | 100 | Mohr-Coulomb | 0 | 28 |
Upper Sand | 120 | Mohr-Coulomb | 0 | 32 |
Silty Sand | 120 | Mohr-Coulomb | 0 | 30 |
Existing Dike Fill | 120 | Mohr-Coulomb | 100 | 26 |
Lower Sand | 120 | Mohr-Coulomb | 0 | 34 |
Fine Grained Organic Alluvium | 115 | Mohr-Coulomb | 100 | 22 |

Method Name	Min Fσ
GLE/Morgenstern-Price | 1.8 |
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psi)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

Method Name: GLE/Morgenstern-Price
Min kS: 1.8

Project: CEC BAP - Inactive Pond Demonstration
Title: Long Term, Normal Storage Pool
Section: C-C
Client: Dominion Energy

SCALE AS SHOWN
DATE 3/14/2018
MADE BY LJ
CAD JGM
CHECK CLIST
STABILITY
PROJECT No. 1300193
REV. 0
REVIEW GLH
FIGURE A - 3
Geotechnical Analysis

Materials and Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Stability

- **Method Name**: GL/E/Weberstein-Price
- **Min FS**: 1.7

Graph

- The graph shows the geotechnical analysis of the pond and the surrounding materials.
- The stability analysis is performed using the GL/E/Weberstein-Price method with a minimum factor of safety of 1.7.
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft^3)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Method Name: GLE/Morgenstern-Price

Min PS: 1.8

SCALE PROJECT
DATE 3/14/2018
MADE BY LJ
CHECK JGM
PROJECT No. 1300193
REV. 0
REVIEW GLH

CEC BAP - Inactive Pond Demonstration
Section E-E
Long Term, Normal Storage Pool

Dominion Energy

FIgure A - 5
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lb/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Method Name | Min FS
GLE/Morgenstern-Price | 1.4
CEC BAP - Inactive Pond Demonstration

Section B-B
Maximum Surcharge Pool

Dominion Energy

Material Name	**Color**	**Unit Weight** (lbs/ft³)	**Strength Type**	**Cohesion** (psf)	**Phi** (deg)
Ponded Fill | | 100 | Mohr-Coulomb | 0 | 28
Upper Sand | | 120 | Mohr-Coulomb | 0 | 32
Silty Sand | | 120 | Mohr-Coulomb | 0 | 30
Existing Dike Fill | | 120 | Mohr-Coulomb | 100 | 26
Lower Sand | | 120 | Mohr-Coulomb | 0 | 34
Fine Grained Organic Alluvium | | 115 | Mohr-Coulomb | 100 | 22

Method Name
GLE/Morgenstern-Price

Min Ps
1.5
Material Name	Color	Unit Weight (lbs/ft^3)	Strength Type	Cohesion (psf)	Phi (deg)
Ponded Fill | | 100 | Mohr-Coulomb | 0 | 28
Upper Sand | | 120 | Mohr-Coulomb | 0 | 32
Silty Sand | | 120 | Mohr-Coulomb | 0 | 30
Existing Dike Fill | | 120 | Mohr-Coulomb | 100 | 26
Lower Sand | | 120 | Mohr-Coulomb | 0 | 34
Lower Silty Sand | | 120 | Mohr-Coulomb | 0 | 34

Method Name	Min FS
GLE/Morgenstern-Price | 1.8

Section C-C
Maximum Surcharge Pool

SCALE AS SHOWN
DATE 3/14/2018
MADE BY LJ
CHECK JGM
PROJECT
TITLE
FILE STABILITY
PROJECT No. 1300193
REV. 0
REVIEW GLH
CLIENT
FIGURE A - 9
Stability Analysis

Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Stability Method

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Min FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE/Morgenstern-Price</td>
<td>1.8</td>
</tr>
</tbody>
</table>

SCALE: AS SHOWN
DATE: 3/14/2018
MADE BY: LJ
CAD:
CHECK: JGM
REVIEW: GLH
PROJECT: CEC BAP - Inactive Pond Demonstration
TITLE: Section E-E
CLIENT: Dominion Energy
FILE: 1300193
STABILITY:
REV.: 0
FIGURE: A - 11
Material Name	Color	Unit Weight (lbs/ft3)	Strength Type	Cohesion (psf)	Phi (deg)	Min FS
Ponded Fill | | 100 | Mohr-Coulomb | 0 | 28 |
Upper Sand | | 120 | Mohr-Coulomb | 0 | 32 |
Layered Clayey Sand | | 120 | Mohr-Coulomb | 100 | 28 |
Silty Sand | | 120 | Mohr-Coulomb | 0 | 30 |
Existing Dike Fill | | 120 | Mohr-Coulomb | 100 | 26 |
Lower Sand | | 120 | Mohr-Coulomb | 0 | 34 |
Fine-Grained Organic Alluvium | | 115 | Mohr-Coulomb | 100 | 22 |

Method Name	Min FS
GLE/morganstern-Price | 1.5
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td>Dike Fill</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td>Fine Grained Organic Alluvium</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Name

GLE/Morgenstern-Price 1.5
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal Function</td>
<td></td>
<td></td>
<td>Ponded Fill</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal Function</td>
<td></td>
<td></td>
<td>Dike Fill</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal Function</td>
<td></td>
<td></td>
<td>Fine Grained Organic Alluvium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Min FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE/Morgenstern-Price</td>
<td>1.8</td>
</tr>
<tr>
<td>Material Name</td>
<td>Unit Weight (lbs/ft³)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Ponded Fill</td>
<td>100</td>
</tr>
<tr>
<td>Upper Sand</td>
<td>120</td>
</tr>
<tr>
<td>Silty Sand</td>
<td>120</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td>125</td>
</tr>
<tr>
<td>Lower Sand</td>
<td>120</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td>120</td>
</tr>
</tbody>
</table>

Method Name: GLE/Morgenstern-Price

Min FS: 1.7

Material Name | Unit Weight (lbs/ft³) | Strength Type | Cohesion (psf) | Phi (deg) | Shear Normal Function |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

SCALE: AS SHOWN

DATE: 3/14/2018

MADE BY: LJ

CHECK: JGM

STABILITY

PROJECT: CEC BAP - Inactive Pond Demonstration

TITLE: Section C-C

Seismic screening

CLIENT: Dominion Energy

FILE: 1300193

REV.: 0

REVIEW: GLH

FIGURE: A - 15
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (°)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Ponded Fill</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Layered Clayey Sand</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Dike Fill</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Fine Grained Organic Alluvium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method Name, MS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE / Morgenstern-Price</td>
<td>1.7</td>
</tr>
</tbody>
</table>

CEC BAP - Inactive Pond Demonstration

Section D-D
Seismic screening

SCALE
AS SHOWN

DATE
3/14/2018

MADE BY
LJ

CHECK
JGM

FILE
STABILITY

PROJECT No.
1300193

REV.
0

REVIEW
GLH

CLIENT
Dominion Energy

FIGURE
A - 16
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Ponded Fill</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Layered Clayey Sand</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Dike Fill</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Fine Grained Organic Alluvium</td>
</tr>
</tbody>
</table>

Method Name

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Min Fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE/Morgenstern-Price</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Seismic screening

SCALE: AS SHOWN

DATE: 3/14/2018

MADE BY: LJ

CAD: -

CHECK: JGM

REVIEW: GLH

PROJECT: CEC BAP - Inactive Pond Demonstration

TITLE: Section E-E

CLIENT: Dominion Energy

FIGURE: A - 17
Seismic screening

Project: CEC BAP - Inactive Pond Demonstration
Date: 3/14/2018
Section F-F
Seismic screening

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retaining Wall</td>
<td></td>
<td>150</td>
<td>Infinite strength</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Method Name: GLE/Morgenstern-Price
Min FS: 1.5

Diagram:
- **Sheet Pile**
- **W**

Scale: 0.01

Notes:
- **File/Check:** 1300193
- **Client:** Dominion Energy
- **Review:** GLH
FIGURES B-1 – B-18

Final Conditions Stability Assessment Results
Table of Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Diagram Details

- **Method Name**: GLE/Morgenstern-Price
- **Min Ps**: 1.5

SCALE: AS SHOWN
DATE: 3/14/2018
PROJECT: CEC BAP - Inactive Pond Demonstration
TITLE: Section A-A
FILE: Stability
CHECK: JGM
CAD: -
CLIENT: Dominion Energy
REV: 0
REVIEW: GLH
FIGURE: B - 1
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>120</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Method Name

- GLE/Morgenstern-Price

Method Name: GLE/Morgenstern-Price

Mn PS: 1.8
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing/Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

Method Name and Parameters

- **GLE/Morgenstern-Price**: Min Ps 1.8
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Min FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLE/Morgenstern-Price</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Method Name

- GLE/Morgenstern-Price: 1.8

SCALE AS SHOWN

PROJECT

DATE

MADE BY

CHECK

CLIENT

FILE

STABILITY

PROJECT No.

REV.

REVIEW

FIGURE

CEC BAP - Inactive Pond Demonstration

Section E-E

Long Term, Normal Storage Pool

Dominion Energy

Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Design Method
- **Method Name**: GLN/Morgenstern-Price
- **Min FS**: 1.4
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft^3)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Method Name

GLE/Morgenstern-Price

1.6

SCALE AS SHOWN

PROJECT

CEC BAP - Inactive Pond Demonstration

DATE

3/14/2018

MADE BY

LJ

CAD

-

CHECK

JGM

CLIENT

Dominion Energy

FIGURE

B - 8

FILE STABILITY

PROJECT No. 1300193

REV. 0

REVIEW GLH
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

Method Name

GLE/Morgenstern-Price 1.8
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Layered Clayey/Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

Stability Analysis

- **Method**: GLE/Morgenstern-Price
- **Min FS**: 1.7
Material Properties

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td>100</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td>115</td>
<td>Mohr-Coulomb</td>
<td>100</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Stability Analysis

- **Method Name**: GLE/Morgenstern-Price
- **Min FS**: 1.8

SCALE

- **AS SHOWN**: 80
- **DATE**: 3/14/2018
- **MADE BY**: LJ
- **CAD**: -
- **CHECK**: JGM
- **REVIEW**: GLH
- **CLIENT**: Dominion Energy
- **FILE**: 1300193
- **STABILITY**: 0
- **PROJECT**: CEC BAP - Inactive Pond Demonstration
- **PROJECT No.**: 1300193
- **REV.**: 0
- **FIGURE**: B - 11

Section E-E

Maximum Surcharge Pool
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Phi b (deg)</th>
<th>Air Entry (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Name</td>
<td>Color</td>
<td>Unit Weight (lbs/ft³)</td>
<td>Strength Type</td>
<td>Cohesion (psf)</td>
<td>Phi (deg)</td>
<td>Shear Normal Function</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal</td>
<td></td>
<td></td>
<td>Ponded Fill</td>
<td></td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal</td>
<td></td>
<td></td>
<td>Dike Fill</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal</td>
<td></td>
<td></td>
<td>Fine Grained Organic Alluvium</td>
<td></td>
</tr>
</tbody>
</table>

Method Name: GLE/Morgenstern-Price
Min FS: 1.5
Seismic Screening Analysis

<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Shear Normal Function</th>
<th>Method Name</th>
<th>Min FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td></td>
<td>GLE/Morgenstern-Price</td>
<td>1.7</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

Note: The table above details the material properties and their respective units for the Seismic screening analysis.
<table>
<thead>
<tr>
<th>Material Name</th>
<th>Color</th>
<th>Unit Weight (lbs/ft³)</th>
<th>Strength Type</th>
<th>Cohesion (psf)</th>
<th>Phi (deg)</th>
<th>Shear Normal Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ponded Fill</td>
<td></td>
<td>100</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Ponded Fill</td>
</tr>
<tr>
<td>Upper Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td></td>
<td>120</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Layered Clayey Sand</td>
</tr>
<tr>
<td>Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Existing Dike Fill</td>
<td></td>
<td>125</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Dike Fill</td>
</tr>
<tr>
<td>Lower Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td></td>
<td>120</td>
<td>Mohr-Coulomb</td>
<td>0</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td></td>
<td>115</td>
<td>Shear Normal function</td>
<td></td>
<td></td>
<td>Fine Grained Organic Alluvium</td>
</tr>
</tbody>
</table>

Method Name
- GLE/Morgenstern-Price

Min Ps
- 1.7

CEC BAP - Inactive Pond Demonstration

Section D-D
Seismic screening

SCALE
AS SHOWN

DATE
3/14/2018

MADE BY
LJ

CAD
-

CHECK
JGM

CLIENT
Dominion Energy

PROJECT No.
1300193

REV.
0

REVIEW
GLH

FIGURE
B - 16
ATTACHMENT 1

Material Properties Calculation Package
1.0 OBJECTIVE

The objective of this package is to characterize the material properties of the ash and soil materials found at Dominion Energy’s Chesapeake Energy Center (CEC) in Chesapeake, VA. Specifically, Golder assessed the dike soils, foundation soils, and impounded materials at the Bottom Ash Pond (BAP) at CEC to support stability and liquefaction analyses of the dikes. Eight units were identified to represent these materials (one for dike fill, one for impounded material, and six for foundation soils):

- Dike Fill Soils
- Ponded Fill (Impounded materials)
- Foundation Materials
 - Fine Grained Organic Alluvium
 - Upper Sand
 - Layered Clayey Sand
 - Silty Sand
 - Lower Sand
 - Lower Silty Sand

2.0 METHODOLOGY

Material properties used in the analyses were evaluated based on geotechnical data available from the following sources:

- Schnabel Engineering’s 2011 report titled “Geotechnical Engineering Study, Chesapeake Energy Center, Phase 1 Evaluation of Perimeter Dikes of the Columbia Gas Property and Dry Ash Landfill”

These sources are discussed in greater detail in the following sections.
2.1 Schnabel Engineering Reports

Schnabel Engineering (Schnabel) completed a stability assessment of dikes surrounding the BAP in February 2010 and a stability assessment of the dikes surrounding the ash landfill (located adjacent to the north side of the BAP) in July 2011. These reports include borehole drilling data in the dikes surrounding the BAP and the ash landfill to the north. Schnabel completed two consolidated-undrained (CU) triaxial tests as part of their 2010 efforts. One CU test was performed on the dike soils of the BAP (noted as Fine-Grained Embankment Fill, Stratum A2 in the Schnabel report), and the other CU test tested the silty sand foundation soils (identified as Coarse-Grained Norfolk Formation, Stratum C).

Schnabel categorized the site materials into six groups in their 2010 report and added a seventh in the 2011 report to model the landfilled ash. For each group, Schnabel provided total and effective strengths and unit weights. Golder grouped soils similarly to Schnabel, but further divided two of Schnabel’s foundation groups after analyzing additional cone penetration test (CPT) data completed by Golder in 2016 and 2017. Golder also modeled the dike fill soils as a single group, whereas Schnabel divided these soils into a fine-grained and coarse-grained portion. Golder found the delineation between fine and coarse grained soils in the dike fill to be variable, so Golder conservatively modeled all the dike fill materials as fine-grained.

2.2 Golder Geotechnical Explorations

Golder completed two rounds of cone penetration tests (CPTs) to provide further characterization of the materials and around the BAP. The first round was conducted by ConeTec on November 21 and 22 of 2016, and ConeTec completed the second round on December 21 and 22 of 2017. Table 3 lists general information and latitude and longitude of the CPTs.
Table 1: Golder CPT Locations and Testing Notes

<table>
<thead>
<tr>
<th>Sounding ID</th>
<th>Date</th>
<th>Total Depth (ft)</th>
<th>Latitude (deg)</th>
<th>Longitude (deg)</th>
<th>Surface Elevation (ft-msl)</th>
<th>Testing Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPT-BAP-01</td>
<td>2016-11-21</td>
<td>72.2</td>
<td>36.76120</td>
<td>-76.30125</td>
<td>20.7</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-02</td>
<td>2016-11-21</td>
<td>62.3</td>
<td>36.76138</td>
<td>-76.30128</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-03</td>
<td>2016-11-21</td>
<td>79.9</td>
<td>36.76204</td>
<td>-76.30100</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-04</td>
<td>2016-11-21</td>
<td>101.7</td>
<td>36.76217</td>
<td>-76.30238</td>
<td>26.9</td>
<td>Seismic CPT</td>
</tr>
<tr>
<td>CPT-BAP-05</td>
<td>2016-11-22</td>
<td>78.7</td>
<td>36.76215</td>
<td>-76.30151</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-06</td>
<td>2016-11-22</td>
<td>75.5</td>
<td>36.76245</td>
<td>-76.30105</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-07</td>
<td>2016-11-22</td>
<td>59.1</td>
<td>36.76153</td>
<td>-76.30222</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-08</td>
<td>2016-11-22</td>
<td>59.1</td>
<td>36.76118</td>
<td>-76.30208</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-09</td>
<td>2016-11-22</td>
<td>95.1</td>
<td>36.76245</td>
<td>-76.30082</td>
<td>21.2</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-10</td>
<td>2017-12-21</td>
<td>72.0</td>
<td>36.76162</td>
<td>-76.30082</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-11</td>
<td>2017-12-21</td>
<td>101.7</td>
<td>36.76146</td>
<td>-76.30336</td>
<td>20.0</td>
<td>Seismic CPT</td>
</tr>
<tr>
<td>CPT-BAP-12</td>
<td>2017-12-22</td>
<td>55.7</td>
<td>36.76242</td>
<td>-76.30440</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-13</td>
<td>2017-12-22</td>
<td>65.6</td>
<td>36.76380</td>
<td>-76.30440</td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>CPT-BAP-14</td>
<td>2017-12-22</td>
<td>65.6</td>
<td>36.76295</td>
<td>-76.30467</td>
<td>20.0</td>
<td>Seismic CPT</td>
</tr>
</tbody>
</table>

Notes:

1. Phreatic surface depth determined from representative pore pressure dissipation tests. Hydrostatically increasing water pressures were used for interpretation tables.
2. Latitude/Longitude- WGS 84. Coordinates were taken with handheld GPS and should be considered approximate.
3. Elevations are referenced to the existing ground/pond surface at the time of testing.
From the CPT data and the geotechnical data available in the Schnabel reports, Golder developed strength properties for use in slope stability analyses. Variation in the dike fills makes delineation of fine-grained and coarse-grained portions ambiguous, so Golder has treated the entire dike as fine-grained to be conservative. Also, Golder split foundation soils which Schnabel identified as part of the Norfolk and Yorktown formations into four groups based on CPT data: Layered Clayey Sand, Silty Sand, Lower Sand, and Lower Silty Sand. Golder added a “Ponded Fill” material to model the impounded material in the BAP. Ultimately, Golder grouped soils into eight layers:

- Dike Fill Soils
- Ponded Fill (Impounded materials)
- Foundation Materials
 - Fine Grained Organic Alluvium
 - Upper Sand
 - Layered Clayey Sand
 - Silty Sand
 - Lower Sand
 - Lower Silty Sand

Logs of the CPT data with these layers identified available in the pages following this text. CPT logs present the tip, sleeve, and pore pressure measurements with depth and the correlated shear strength values.

3.0 SELECTED MATERIAL PROPERTIES

Golder selected strength parameters and unit weights for use in stability analyses based on data available in Schnabel’s reports and CPT data collected during Golder’s geotechnical explorations. Golder found the majority of values presented in Schnabel’s reports to be consistent with CPT data, so Golder used the Schnabel values for most materials. However, the following modifications were made to the values presented by Schnabel:

- All dike fill was modeled as a single unit due to variation within dikes. The fine-grained dike fill properties were used for the entire dike fill.
- The undrained strength of fine grained organic alluvium was modeled with a stress-dependent component to account for a wider range of overburden stresses.
- The drained strength of the Upper Sand was slightly increased to be more consistent with CPT data.
- Golder assigned the ponded fill strength based on CPT data and experience with similar materials at other sites.
The selected properties used for stability analyses are listed in Table 4. Also, the selected strengths are plotted on the attached CPT logs with the values correlated from CPT data.

Table 2: Selected Material Properties for Use in Slope Stability Analysis

<table>
<thead>
<tr>
<th>Material</th>
<th>Drained Strength</th>
<th>Undrained Strength</th>
<th>Unit Weight (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>φ' (degrees)</td>
<td>c' (psf)</td>
<td>Sut/σv</td>
</tr>
<tr>
<td>Dike Fill</td>
<td>26</td>
<td>100</td>
<td>N/A</td>
</tr>
<tr>
<td>Ponded Fill</td>
<td>20</td>
<td>100</td>
<td>0.22</td>
</tr>
<tr>
<td>Fine Grained Organic Alluvium</td>
<td>20</td>
<td>100</td>
<td>0.22</td>
</tr>
<tr>
<td>Upper Sand</td>
<td>32</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Layered Clayey Sand</td>
<td>28</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>Silty Sand</td>
<td>30</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Lower Sand</td>
<td>34</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Lower Silty Sand</td>
<td>34</td>
<td>0</td>
<td>N/A</td>
</tr>
</tbody>
</table>

4.0 REFERENCES

Test ID: CPT-BAP-02
CPT Rig Type: Truck
GS Elev. (ft-msl): 20.0
Location: CEC BAP Dikes
Test Depth (ft): 62.3
Groundwater Depth (ft-bgs): 15.3
Project #: 130-0193
Project Name: BAP - Inactive Pond Demo.
Client: Dominion Energy

<table>
<thead>
<tr>
<th>Depth (ft-bgs)</th>
<th>qt (tsf)</th>
<th>Sleeve Friction (tsf)</th>
<th>Pore Pressure (tsf)</th>
<th>Undrained Shear Strength (tsf)</th>
<th>Friction Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>400</td>
<td>4</td>
<td>-10</td>
<td>10</td>
</tr>
<tr>
<td>40</td>
<td>600</td>
<td>800</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>900</td>
<td>1000</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>1100</td>
<td>1200</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>1300</td>
<td>1400</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>1500</td>
<td>1600</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Water Level
Hyd. Line
Pore Pressure
Su Correlated
Su Selected
Phi Correlated
Phi Selected

Layered Clayey Sand
Existing Dike Fill
Lower Silty Sand
Upper Sand
Silty Sand
Lower Sand
Fine Grained Organic Alluvium
Test ID: CPT-BAP-04
CPT Rig Type: Truck
GS Elev. (ft-msl): 25.0
Location: CEC BAP Dikes
Test Depth (ft): 101.7
Project #: 130-0193
Project Name: BAP - Inactive Pond Demo.
Groundwater Depth (ft-bgs): 25.6
Client: Dominion Energy
Test ID: CPT-BAP-05 CPT Rig Type: Truck Project #: 130-0193
GS Elev. (ft-msl): 25.0 Location: CEC BAP Dikes Project Name: BAP - Inactive Pond Demo.
Test Depth (ft): 78.7 Groundwater Depth (ft-bgs): 26.3 Client: Dominion Energy

Chirp Test

Depth (ft-bgs)

Depth (ft-bgs)

Water Level

Hyd. Line

Pore Pressure

Sleeve Friction (tsf)

Pore Pressure (tsf)

Undrained Shear Strength (tsf)

Friction Angle (deg)

Ponded Fill

Layered Clayey Sand

Existing Dike Fill

Lower Silty Sand

Upper Sand

Silty Sand

Lower Sand

Fine Grained Organic Alluvium
Test ID: CPT-BAP-06 CPT Rig Type: Truck Project #: 130-0193
GS Elev. (ft-msl): 25.0 Location: CEC BAP Dikes Client: Dominion Energy
Test Depth (ft): 75.5 Project Name: BAP - Inactive Pond Demo.
Groundwater Depth (ft-bgs): 27.0

<table>
<thead>
<tr>
<th>Depth (ft-bgs)</th>
<th>qt (tsf)</th>
<th>Sleeve Friction (tsf)</th>
<th>Pore Pressure (tsf)</th>
<th>Undrained Shear Strength (tsf)</th>
<th>Friction Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>-10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2</td>
<td>30</td>
<td>1.5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>50</td>
<td>2</td>
<td>40</td>
</tr>
</tbody>
</table>

- Ponded Fill
- Layered Clayey Sand
- Upper Sand
- Silty Sand
- Existing Dike Fill
- Lower Silty Sand
- Fine Grained Organic Alluvium

- Water Level
- Hyd. Line
- Pore Pressure
- Su Correlated
- Su Selected
- Phi Correlated
- Phi Selected
Test ID: CPT-BAP-07
GS Elev. (ft-msl): 17.5
Test Depth (ft): 59.1
CPT Rig Type: Truck
Location: CEC BAP Dikes
Groundwater Depth (ft-bgs): 10.4
Project #: 130-0193
Project Name: BAP - Inactive Pond Demo.
Client: Dominion Energy

- Depth (ft-bgs)
 - qt (tsf)
 - Sleeve Friction (tsf)
 - Pore Pressure (tsf)
 - Undrained Shear Strength (tsf)
 - Friction Angle (deg)

- Water Level
- Hyd. Line
- Pore Pressure
- Su Correlated
- Su Selected
- Phi Correlated
- Phi Selected

- Ponded Fill
- Layered Clayey Sand
- Existing Dike Fill
- Lower Silty Sand
- Upper Sand
- Silty Sand
- Lower Sand
- Fine Grained Organic Alluvium
Test ID: CPT-BAP-08
CPT Rig Type: Truck
GS Elev. (ft-msl): 20.0
Location: CEC BAP Dikes
Test Depth (ft): 59.1
Project #: 130-0193
Groundwater Depth (ft-bgs): 14.0
Project Name: BAP - Inactive Pond Demo.
Client: Dominion Energy

Depth (ft-bgs)
0 20 40 60 80 100 120

qt (tsf)
0 200 400

Sleeve Friction (tsf)
0 1 2 3 4
-10 10 30 50

Pore Pressure (tsf)
0 0.5 1 1.5 2

Undrained Shear Strength (tsf)
0 20 25 30 35 40 45

Friction Angle (deg)
0 20 40 60 80 100 120

Depth (ft-bgs)

Water Level
Hyd. Line
Pore Pressure

Su Correlated
Su Selected

Phi Correlated
Phi Selected

- Ponded Fill
- Layered Clayey Sand
- Existing Dike Fill
- Lower Silty Sand
- Upper Sand
- Silty Sand
- Lower Sand
- Fine Grained Organic Alluvium
Test ID: CPT-BAP-11
CPT Rig Type: Truck
Project #: 130-0193
GS Elev. (ft-msl): 20.0
Location: CEC BAP Dikes
Groundwater Depth (ft-bgs): 18.8
Project Name: BAP - Inactive Pond Demo.
Test Depth (ft): 101.7
Client: Dominion Energy
Test ID: CPT-BAP-13
CPT Rig Type: Truck
GS Elev. (ft-msl): 20.0
Location: CEC BAP Dikes
Test Depth (ft): 65.6
Groundwater Depth (ft-bgs): 20.1
Project #: 130-0193
Project Name: BAP - Inactive Pond Demo.
Client: Dominion Energy

```
<table>
<thead>
<tr>
<th>Depth (ft-bgs)</th>
<th>qt (tsf)</th>
<th>Sleeve Friction (tsf)</th>
<th>Pore Pressure (tsf)</th>
<th>Undrained Shear Strength (tsf)</th>
<th>Friction Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Material Layers:
- Ponded Fill
- Layered Clayey Sand
- Existing Dike Fill
- Lower Silty Sand
- Upper Sand
- Silty Sand
- Lower Sand
- Fine Grained Organic Alluvium
ATTACHMENT 2

Seismic Hazard Calculation Package
1.0 OBJECTIVE

This calculation package identifies and summarizes the seismic hazard at the project site located nominally at 76.302°W and 36.762°N. The seismic hazard is necessary for geotechnical design evaluations of stability under earthquake loading and liquefaction susceptibility.

2.0 SEISMIC HAZARD SUMMARY

For ash pond closures, the United States Environmental Protection Agency's (USEPA) CCR Rule has specified seismic analyses be completed for a seismic event with a 2% probability of exceedance in 50 years (2% / 50yr), equivalent to a return period of approximately 2,500 years, based on the United States Geological Survey (USGS) seismic hazard maps. The USGS has provided online tools associated with this hazard for its 2014 seismic hazard model (SHM). The sections below detail the use of these tools to obtain seismic hazard data for use in analyses.

2.1 Peak Ground and Spectral Acceleration

The peak ground acceleration (PGA) and spectral ground accelerations (Sₐ) corresponding to a range of spectral periods are necessary for many engineering analyses including slope stability analysis and liquefaction analysis. For a 2% PE in 50 years of the 2014 SHM, The USGS provides a reference PGA and spectral accelerations corresponding to a reference site on the border between the National Earthquake Reductions Hazard Program (NEHRP) site classes B and C with an average shear wave velocity in the upper 30 m (Vs₃₀) of 760 m/s. These reference accelerations are often referenced with a BC subscript (e.g. PGA_BC) and can be scaled as appropriate to match site conditions and analysis input requirements. Figure 1 below shows the project site on the 2014 USGS seismic hazard map for PGA_BC, and Figure 2 displays the uniform hazard response spectrum curve, which plots the reference spectral acceleration, or ground motion, for various spectral periods. The uniform hazard response spectrum curve is presented in tabular form in Table 1.
Figure 1: PGA$_{SC}$ for the 2% PE in 50 years at the project site (red star). (USGS 2014).

Figure 2: Uniform Hazard Response Spectrum for the 2% PE in 50 years Seismic Hazard at the Project Site (USGS 2014).
Table 1: Reference site (BC) PGA and Spectral Acceleration for the 2% PE in 50 year Seismic Hazard at the Project Site (USGS 2014).

<table>
<thead>
<tr>
<th>Spectral Period (s)</th>
<th>Acceleration, BC (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (PGA)</td>
<td>0.0401</td>
</tr>
<tr>
<td>0.2</td>
<td>0.0824</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0332</td>
</tr>
<tr>
<td>2.0</td>
<td>0.0184</td>
</tr>
</tbody>
</table>

2.2 Seismic Hazard Deaggregation

The seismic hazard is compiled from multiple predictive models which consider many seismic sources of varying combinations of earthquake magnitude and distance from the project site. For each magnitude and distance pair, models predict the resulting accelerations and activity rates for the project site. The results of these predictive models are aggregated to produce the seismic hazard model for specified return periods. The seismic hazard model can be deaggregated to obtain the contribution to hazard percentage of magnitude and distance combinations. This information is necessary for analyzes requiring earthquake magnitude (e.g. liquefaction susceptibility) or distance. Figure 3 below displays a deaggregation plot of the PGA_{BC} at the project site for a 2% PE in 50 years with descriptive statistics available through the USGS online tools.

![Deaggregation Plot](image)

Figure 3: Deaggregation Plot of the PGA_{BC} at the Project Site for a 2% PE in 50 Years.

<table>
<thead>
<tr>
<th>Mean</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5.86</td>
</tr>
<tr>
<td>R (km)</td>
<td>136.45</td>
</tr>
<tr>
<td>ε₀</td>
<td>0.23</td>
</tr>
</tbody>
</table>
3.0 DESIGN EARTHQUAKE MAGNITUDE

Some seismic analysis methods require a design earthquake magnitude as an input. One such analysis is the liquefaction screening method. Based on its application in the liquefaction screening, a design earthquake magnitude of 5.68 was selected. Additional details on the design earthquake magnitude are available in the Liquefaction Assessment Calculation Package. This design earthquake magnitude was used in other analyses requiring a design magnitude for consistency.

4.0 PSEUDOSTATIC COEFFICIENT

For slope stability analyses, Golder used the Bray and Travasarou (2009) screening method which models the seismic loading using a pseudostatic coefficient \(k \). This section details the calculation of the pseudostatic coefficient for the project site. Details on the slope stability analysis are available in a separate calculation package.

Stability under seismic conditions is calculated using the pseudo-static method to model horizontal seismic forces as the product of a seismic coefficient \(k \) and the weight of the sliding mass (vertical seismic forces are typically neglected). Bray and Travasarou (2009) proposed screening methodology to determine the seismic coefficient \(k \) based on the degraded period of the sliding mass and an allowable seismic displacement threshold. The screening method includes an equation to calculate the pseudostatic coefficient for periods of 0.2 and 0.5 seconds, which encompasses the range of typical slope periods. A period of 0.2 s is more conservative, so for this analysis, Golder used the equation associated with a period of 0.2 s and an allowable seismic displacement of 15 cm:

\[
k_{15 \text{ cm}} = (0.036M_w - 0.004)S_a - 0.030 > 0.0, \quad \text{for } S_a = S_a(T = 0.2 \text{ s}) < 2.0 \text{ g}
\]

Where, \(k_{15 \text{ cm}} \) = pseudostatic coefficient

\(M_w \) = Design Earthquake Magnitude

\(S_a \) = Spectral acceleration at the base of the sliding mass

As noted in Section 2.1, the BC spectral acceleration at a period of 0.2 s is 0.0824. This value is multiplied by an amplification factor to obtain the acceleration at the base of the sliding mass. Golder used an amplification factor of 1.6 as prescribed by the international building code (IBC 2012) for a site class D. The project site was classified as D according to the representative shear wave velocity in the upper 30 meters or 100 feet (Vs30). Details on the site Vs30 are available in the Liquefaction Assessment Calculation Package. Thus, the spectral acceleration used in the above equation is 0.132g.

Using a design magnitude of 5.68 and spectral acceleration of 0.132g, the calculated pseudostatic coefficient is nearly zero for an allowable seismic displacement of 15 cm due to the low seismic hazard. In an effort to demonstrate an acceptable factor of safety in slope stability analyses, Golder conservatively
used the coefficient for an allowable displacement of two inches (5 cm) as described with the equation below:

\[
k_{5\text{cm}} = (0.040M_w + 0.120)S_a - 0.034 > 0 \text{ for } S_a = S_a(T = 0.2 \text{ s}) < 2.0 \text{ g}
\]

This equation yields a pseudostatic coefficient of 0.01g, which was used for seismic stability demonstrations.

5.0 REFERENCE

ATTACHMENT 3

Liquefaction Assessment Calculation Package
1.0 OBJECTIVE

The objective of this calculation is to assess the liquefaction potential of the foundation soils and surrounding dikes of the bottom ash pond (BAP) at Dominion Energy’s Chesapeake Energy Center (CEC). This assessment is a screening-level assessment performed according to the simplified procedure, as described in Youd et al. (2001). Cone Penetration Test (CPT) data was used to estimate the soil properties for this assessment. A variation from the procedure was performed based on an updated method of incorporating CPT data into the liquefaction assessment (Robertson, 2009).

Factors of safety against liquefaction were calculated for eight CPT soundings pushed in the dikes surrounding the BAP (CPT-BAP-01 and CPT-BAP-08 through -14).

2.0 LIQUEFACTION ASSESSMENT METHODOLOGY

Seismically-induced liquefaction susceptibility was evaluated using the National Center for Earthquake Engineering Research (NCEER) simplified procedure with CPT data (Youd et al., 2001). The simplified procedure is an empirical method used to calculate the factor of safety against liquefaction. The factor of safety is defined as a ratio of the cyclic resistance ratio (CRR) to the cyclic stress ratio (CSR). The CRR is a measure of a soil's resistance to liquefaction and was estimated using CPT data. The CSR is a measure of the seismic demand on the soil and was estimated using seismic hazard assessment resources provided by the United States Geologic Survey (USGS) as described in Golder’s Seismic Hazard Assessment package.

2.1 CSR Determination

The CSR is defined as:

$$CSR = \frac{\tau_{ave}}{\sigma'_{v}} = 0.65 \left(\frac{a_{max}}{g} \right) \left(\frac{\sigma_v}{\sigma'_{v}} \right) r_d$$

where a_{max} is the peak horizontal acceleration at the ground surface, g is the acceleration due to gravity, σ_v is the total vertical overburden stress, σ'_{v} is the effective vertical overburden stress, and r_d is a depth-dependent stress reduction factor defined as:
\[
\begin{align*}
 r_d &= 1.0 - 0.00765z \quad \text{for } z \leq 9.15 \text{ m} \\
 r_d &= 1.174 - 0.0267z \quad \text{for } 9.15 \text{ m} < z \leq 23 \text{ m} \\
 r_d &= 0.744 - 0.008z \quad \text{for } 23 \text{ m} < z \leq 30 \text{ m} \\
 r_d &= 0.50 \quad \text{for } z > 30 \text{ m}
\end{align*}
\]

where \(z \) is the depth in meters (m).

The site reference peak ground acceleration (PGA,BC) discussed in Golder’s Seismic Hazard Assessment package was used to calculate acceleration at the ground surface (\(a_{\text{max}} \)). To obtain a representative \(a_{\text{max}} \), the PGA,BC was multiplied by an amplification factor calculated from the average shear wave velocity in the upper 30 meters (Vs30). The shear wave velocity was measured in two CPTs (CPT-BAP-11 and CPT-BAP-14), and a representative shear wave velocity was derived from these measurements. Figure 1 below shows the measured shear wave velocities and the representative shear wave velocity profile. The Vs30 was calculated from the representative profile to be 840 ft/s.

An amplification factor was calculated using the site response term from the Atkinson and Boore (2006) publication on earthquake ground-motion prediction equations for Eastern North America. The International Building Code (IBC) also provides amplification factors for structures. While these factors may not be directly applicable due to the different responses of earthen dams and buildings to seismic loads, the amplification factor was calculated using this alternative method as a check on the Atkinson and Boore method.

The amplification factors were calculated to be 1.72 using the Atkinson and Boore method, and 1.69 using the IBC method. Golder selected an amplification factor of 1.7.

\(a_{\text{max}} \) was thus calculated to be \(0.040g \times 1.7 = 0.068g \) for a 2,475 year return period.

This \(a_{\text{max}} \) value was used to calculate CSR.
2.2 CRR Determination

The second major step in assessing the liquefaction susceptibility using the simplified approach is to estimate the CRR. Robertson and Wride (1998) developed the procedure for calculating CRR from the CPT as a function of the "clean sand" cone penetration resistance normalized to 1 atmosphere (atm; approximately 100 kilopascals; kPa) and given as \((q_{clN})_{cs}\). The CRR is based on an earthquake magnitude of 7.5 and a magnitude scaling factor (MSF) adjusts the CRR for magnitudes other than 7.5.

The CRR for an earthquake magnitude (M) of 7.5 is given as:

\[
\begin{align*}
(q_{clN})_{cs} < 50 & \quad CRR_{7.5} = 0.833 \left(\frac{q_{clN}}{1000}\right) + 0.05 \\
50 \leq (q_{clN})_{cs} < 160 & \quad CRR_{7.5} = 93 \left(\frac{q_{clN}}{1000}\right)^3 + 0.08
\end{align*}
\]
where \((q_{c1N})_{cs}\) is the clean sand cone penetration resistance normalized to 1 atm (approximately 100 kPa or 1 ton per square foot; tsf).

The tip resistance \((q_c)\) is normalized to obtain \(q_{c1N}\) as:

\[
q_{c1N} = C_Q \left(\frac{q_c}{P_a}\right)
\]

\[
C_Q = \left(\frac{P_a}{\sigma'_{vo}}\right)^n
\]

where \(C_Q\) is the normalizing factor for cone penetration resistance, \(P_a\) is 1 atm of pressure, \(n\) is an exponent that is dependent on the soil type, and \(q_c\) is the cone tip penetration resistance \((q_c\) is replaced by \(q_t\) the cone tip resistance corrected for geometric impacts of the pore pressure measurement in all instances).

The method adopted in this assessment calculates the exponent, \(n\), according to a method developed by Robertson (2009) and represents a small modification from the standard NCEER approach. The exponent, \(n\), is calculated as:

\[
n = 0.381l_c + 0.05 \left(\frac{\sigma'_{vo}}{P_a}\right) - 0.15 \leq 1.0
\]

where

\[
l_c = [(3.47 - log Q_{tt})^2 + (1.22 + log F_r)^2]^{0.5}
\]

\[
Q_{tt} = \left[\frac{q_c - \sigma_{vo}}{\sigma'_{vo}}\right]
\]

\[
F_r = \left[\frac{f_s}{q_c - \sigma_{vo}}\right] \times 100%
\]

2.2.1 Clean Sand Equivalent Cone Penetration Resistance \((q_{c1N})_{cs}\)

According to the NCEER approach, the presence of fines affects the liquefaction resistance of soils. A correction factor, \(K_c\), is applied to the normalized penetration resistance \((q_{c1N})\) to determine the clean sand equivalent \((q_{c1N})_{cs}\) where

\[
(q_{c1N})_{cs} = K_c q_{c1N}
\]

for \(l_c \leq 1.64\) \(K_c = 1.0\)

for \(l_c > 1.64\) \(K_c = -0.403l_c^4 + 5.581l_c^3 - 21.63l_c^2 + 33.75l_c - 17.88\)**
2.2.2 Magnitude Scaling Factor (MSF)

The magnitude scaling factor (MSF) adjusts the CRR for magnitudes other than 7.5 (Youd et al. 2001) where the factor of safety against liquefaction is calculated as

\[FS = \frac{CRR_{7.5}}{CSR} \times MSF \]

A number of different MSF values are discussed in the NCEER approach. The MSF values used in this assessment are the revised Idriss values (which are considered a lower bound set of values), and are calculated as:

\[MSF = \frac{10^{2.24}}{M^{2.56}} \]

A probabilistic seismic hazard analysis was used to estimate the PGA, but such an analysis includes the aggregate contributions of all possible combinations of magnitude and distance from all sources, all weighted by their relative likelihoods of occurrence (Kramer, 2008). However, the simplified approach requires the selection of a single earthquake magnitude. Since liquefaction is sensitive to ground motion duration, which is correlated to earthquake magnitude, this selection is an important issue in liquefaction assessments.

The selection of either the mean or modal magnitude produces inconsistent risks of liquefaction because the relationship between duration (represented by magnitude) and liquefaction potential is non-linear. Kramer (2008) suggests that the best way to handle this issue is to perform liquefaction calculations for all magnitudes and to weight the results according to the relative contribution of each magnitude.

Golder has implemented this approach by recognizing that the MSF is the only term in the simplified approach that is affected by the magnitude selection. Golder calculated a weighted-average MSF (weighted by the relative contribution of each magnitude) and then calculated the magnitude corresponding to that MSF.

Golder calculated the earthquake magnitude to be 5.68. This value is less than the mean magnitude (5.86), and is greater than the modal magnitude (4.90).

2.3 Factor of Safety Against Liquefaction

The factor of safety was calculated as:

\[FS = \frac{CRR_{7.5}}{CSR} \times MSF \]
The factor of safety was calculated for each CPT reading (every recorded CPT depth reading). The liquefaction output and factors of safety are presented in Attachment 1.

3.0 RESULTS AND CONCLUSIONS

The USEPA’s 2015 Final Rule on the Disposal of Coal Combustion Residuals (CCR, EPA Rule) specify a required factor of safety of 1.2 against liquefaction for pond impoundment structures in section § 257.73(e)(iv). The dikes impounding the BAP at CEC meet this requirement as all calculated factors of safety against liquefaction for both dike and foundation materials are in excess of 1.2 for all eight CPT soundings analyzed.

4.0 REFERENCES

5.0 ATTACHMENTS

Attachment 1 - Liquefaction Factor of Safety Results
<table>
<thead>
<tr>
<th>Test Date:</th>
<th>11/21/2016</th>
<th>Project:</th>
<th>CEC - Inactive Demo.</th>
<th>Test Type:</th>
<th>CPTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test ID:</td>
<td>CPT-BAP-01</td>
<td>Location:</td>
<td>Chesapeake, VA</td>
<td>Device:</td>
<td>10 cm², Type 2 filter</td>
</tr>
<tr>
<td>Latitude:</td>
<td>36.76120</td>
<td>Client:</td>
<td>Dominion Energy</td>
<td>Standard:</td>
<td>ASTM D5778</td>
</tr>
<tr>
<td>Longitude:</td>
<td>-76.30125</td>
<td>Proj No.:</td>
<td>1300193</td>
<td>Push Co.:</td>
<td>ConeTec</td>
</tr>
<tr>
<td>Elevation:</td>
<td>20.7 ft</td>
<td>Termination:</td>
<td>71.9 ft bgs</td>
<td>Operator:</td>
<td>ConeTec</td>
</tr>
<tr>
<td>Water Table:</td>
<td>16.4 ft</td>
<td>Golder Eng:</td>
<td>L. Jin</td>
<td>Review:</td>
<td>G. Hebeler</td>
</tr>
<tr>
<td></td>
<td>2% PE in 50 years Seismic Hazard</td>
<td>Check:</td>
<td>G. Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnitude:</td>
<td>5.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>a_s prostitu</td>
<td>0.068 g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphical Data

- **q (tsf)**
- **fs (tsf)**
- **u (ft)**
- **Fr (%)**
- **Qtn**
- **Bq**
- **Ic**
- **q_{c1N}**
- **q_{s1N}**
- **q_{s1N,ex}**
- **CSR/CRR**
- **FS reactivation**
- **(s_u/s_u)_re**

For FS calculation, all soils assumed to be saturated.
Test Date: 11/22/2016
Project: CEC - Inactive Demo.
Test ID: CPT-BAP-08
Location: Chesapeake, VA
Latitude: 36.76118
Longitude: -76.30208
Elevation: 19.5 ft
Test Type: CPTU
Device: 10 cm², Type 2 filter
Standard: ASTM D5778
Water Table: 14.0 ft
2% PE in 50 years Seismic Hazard
Golder Eng: L. Jin
Check: G. Martin
Client: Dominion Energy
Push Co.: ConeTec
Operator: ConeTec
Proj No.: 1300193
Review: G. Hebler

Graphs and Data

- **Fr (%)**
- **Qcn**
- **Bq**
- **Qcm, ex**
- **CSR/CRR**
- **FS**

For FS calculation, all soils assumed to be saturated.

Table

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>q(_t) (tsf)</th>
<th>fs (tsf)</th>
<th>u (ft)</th>
<th>Fr (%)</th>
<th>Qcn</th>
<th>Bq</th>
<th>Ic</th>
<th>q(_c),ex</th>
<th>q(_cm, ex)</th>
<th>CSR/CRR</th>
<th>FS(_{liquefaction})</th>
<th>((\sigma_u)_u)/(\sigma_u)_vo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100-150</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150-200</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200-250</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>1.9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>250-300</td>
<td>2.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes

- All soils assumed to be saturated.
- For FS calculation, all soils assumed to be saturated.

Graph Legend

- u2
- u0 (avg)
- Selected
- Robertson & Wride

Contact Information

- Golder Associates [logo]
<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>qt (tsf)</th>
<th>fs (tsf)</th>
<th>u (ft)</th>
<th>Fr (%)</th>
<th>Qtn</th>
<th>Bq</th>
<th>Ic</th>
<th>qtr</th>
<th>qtr,ax</th>
<th>CSR/CRR</th>
<th>FS_rejection</th>
<th>(σu/ω)</th>
<th>Reasonable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>

For FS calculation, all soils assumed to be saturated.
Test Information

- **Test Date:** 12/22/2017
- **Test ID:** CPT-BAP-14
- **Location:** Chesapeake, VA
- **Client:** Dominion Energy
- **Proj No.:** 1300193
- **Termination:** 71.9 ft

Geotechnical Data

- **Device:** 10 cm², Type 2 filter
- **Standard:** ASTM D5778
- **Push Co.:** ConeTec
- **Operator:** ConeTec

Elevation

Depth (ft)	q* (tsf)	fs (tsf)	u (ft)	Fr (%)	Qtn	Bq	Ic	q100%	qCRB	CSR/CRR	FS
0	0	0	0	0	-1	0	1	0	200	0.3	0
20	0	0	0	0	-1	0	1	0	200	0.3	0
40	0	0	0	0	-1	0	1	0	200	0.3	0
60	0	0	0	0	-1	0	1	0	200	0.3	0
80	0	0	0	0	-1	0	1	0	200	0.3	0
100	0	0	0	0	-1	0	1	0	200	0.3	0
120	0	0	0	0	-1	0	1	0	200	0.3	0

Additional Information

- **Golder Eng:** L. Jin
- **Check:** G. Martin
- **Review:** G. Hebeler
- **Client:** Chesapeake, VA
- **Standard:** ASTM D5778
- **Location:** Chesapeake, VA
- **Magnitude:** 5.68
- **SEIS:** 0.068 g
- **CEC - Inactive Demo.**
- **Termination:** 71.9 ft

Notes

For FS calculation, all soils assumed to be saturated.
Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.