II. DESCRIPTION OF THE PROPOSED PROJECT

B. Line Design and Operational Features

1. Detail the number of circuits and their design voltage, initial operational voltage, any anticipated voltage upgrade, and transfer capabilities.

Response: The Rebuild Project will affect two circuits, Chesterfield-Lakeside Line #217 and Chesterfield-Chickahominy Line #287.

Line #217 will be rebuilt for a design and operational voltage of 230 kV with a summer transfer capability of 1047 MVA.

A section of Line #287 will be rebuilt as part of the Rebuild Project, as set forth in Section I.F. This section of Line #287 will be rebuilt for a design and operational voltage of 230 kV with a summer transfer capability of 1047 MVA. But the operational transfer capability of Line #287 will not change as part of the Rebuild Project because it will be limited by the transfer capability of the conductor in the sections of the line not included in the Rebuild Project.
II. DESCRIPTION OF THE PROPOSED PROJECT

B. Line Design and Operational Features

2. Detail the number, size(s), type(s), coating and typical configurations of conductors. Provide the rationale for the type(s) of conductor(s) to be used.

Response: Chesterfield-Lakeside 230 kV Line #217 will have predominantly 3-phase twin-bundled 636 ACSR conductors arranged horizontally, except at Structures #111 to #112 and #188 to #189 where the conductors will be arranged vertically. The twin-bundled 636 ACSR conductors are the Company's standard for new 230kV construction.

Approximately 0.7 miles of Line #217 will be rebuilt with 3-phase 1233.6 ACSS/TW (HS-285) single conductor, arranged horizontally, from the existing backbone structure (Structure #1A) in Chesterfield Substation to the proposed 3-pole structure (Structure #7) located approximately 1,400 feet north of the James River. The 1233.6 ACSS/TW (HS-285) conductor is a Company standard for ampacity uprates on existing structures or in situations for new construction where the twin-bundled 636 ACSR is not feasible due to sag and tension requirements.

Chesterfield-Chickahominy 230 kV Line #287 will have approximately 0.7 miles rebuilt with 3-phase 1233.6 ACSS/TW (HS-285) single conductor, arranged horizontally, from the existing backbone structure (Structure #1C) in Chesterfield Substation to the proposed 3-pole structure (Structure #6) located approximately 1,400 feet north of the James River. The 3-phase 1233.6 ACSS/TW (HS-285) conductor is a Company standard for ampacity uprates on existing structures or in situations for new construction where the twin-bundled 636 ACSR is not feasible due to sag and tension requirements.
II. DESCRIPTION OF THE PROPOSED PROJECT

B. Line Design and Operational Features

3. With regard to the proposed supporting structures over each portion of the ROW for the preferred route, provide diagrams (including foundation reveal) and descriptions of all the structure types, to include:

 a. mapping that identifies each portion of the preferred route;
 b. the rationale for the selection of the structure type;
 c. the number of each type of structure and the length of each portion of the ROW;
 d. the structure material and rationale for the selection of such material;
 e. the foundation material;
 f. the average width at cross arms;
 g. the average width at the base;
 h. the maximum, minimum and average structure heights;
 i. the average span length; and
 j. the minimum conductor-to-ground clearances under maximum operating conditions.

Response: Attachment II.A.2 provides mapping that identifies each portion of the proposed route.

Attachments II.B.3.a through tt provide the data requested for each proposed structure type over each portion of the right-of-way for the Rebuild Project.
PROPOSE TO REUSE EXISTING DOUBLE CIRCUIT RIVER CROSSING SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: N/A - EXISTING
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.40 MILES (1)
D. STRUCTURE MATERIAL: PAINTED GALVANIZED STEEL
 RATIONALE FOR STRUCTURE MATERIAL: N/A - EXISTING
E. FOUNDATION MATERIAL: CONCRETE / STEEL
 AVERAGE FOUNDATION REVEAL: 19' (NOTE 1)
F. AVERAGE WIDTH AT CROSSARM: 96'
G. AVERAGE WIDTH AT BASE: 46'
H. MINIMUM STRUCTURE HEIGHT: 212'
 MAXIMUM STRUCTURE HEIGHT: 212'
 AVERAGE STRUCTURE HEIGHT: 212'
I. AVERAGE SPAN LENGTH: 1053' (1015' - 1090')
J. MINIMUM CONDUCTOR -TO- MHW: 166' (BY PERMIT AT MAX OPERATING TEMPERATURE)

NOTE: 1. EXISTING FOUNDATION REVEAL MAY VARY AT EACH LEG LOCATION DUE TO TERRAIN.

* THE SAME STRUCTURE TYPES ARE UTILIZED FOR STRUCTURES 5 & 6 ON LINE 287
SECTION 1: STRUCTURES 6 - 7*

PROPOSED SINGLE CIRCUIT HEAVY ANGLE 3-POLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.40 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 40'
H. MINIMUM STRUCTURE HEIGHT: 95'
 MAXIMUM STRUCTURE HEIGHT: 95'
 AVERAGE STRUCTURE HEIGHT: 95'
I. AVERAGE SPAN LENGTH: 1053' (1015' - 1090')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.

* THE SAME STRUCTURE TYPES ARE UTILIZED FOR STRUCTURES 5 & 6 ON LINE 287
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.86 MILES (5)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 75'
 MAXIMUM STRUCTURE HEIGHT: 84'
 AVERAGE STRUCTURE HEIGHT: 78'
I. AVERAGE SPAN LENGTH: 646' (501' - 853')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES.
PROPOSED SINGLE CIRCUIT ANGLE (20 - 60 DEG) 3-POLE DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.86 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 40'
H. MINIMUM STRUCTURE HEIGHT: 75'
 MAXIMUM STRUCTURE HEIGHT: 75'
 AVERAGE STRUCTURE HEIGHT: 75'
I. AVERAGE SPAN LENGTH: 646' (501' - 853')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

<table>
<thead>
<tr>
<th>B.</th>
<th>RATIONALE FOR STRUCTURE TYPE:</th>
<th>RESEMBLES GEOMETRY OF EXISTING FACILITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.</td>
<td>LENGTH OF R/W (STRUCTURE QUANTITY):</td>
<td>0.86 MILES (1)</td>
</tr>
<tr>
<td>D.</td>
<td>STRUCTURE MATERIAL:</td>
<td>WEATHERING STEEL</td>
</tr>
<tr>
<td></td>
<td>RATIONALE FOR STRUCTURE MATERIAL:</td>
<td>TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE</td>
</tr>
<tr>
<td>E.</td>
<td>FOUNDATION MATERIAL:</td>
<td>CONCRETE</td>
</tr>
<tr>
<td></td>
<td>AVERAGE FOUNDATION REVEAL:</td>
<td>SEE NOTE 3.</td>
</tr>
<tr>
<td>F.</td>
<td>AVERAGE WIDTH AT CROSSARM:</td>
<td>47'</td>
</tr>
<tr>
<td>G.</td>
<td>AVERAGE WIDTH AT BASE:</td>
<td>24'</td>
</tr>
<tr>
<td>H.</td>
<td>MINIMUM STRUCTURE HEIGHT:</td>
<td>90'</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM STRUCTURE HEIGHT:</td>
<td>90'</td>
</tr>
<tr>
<td></td>
<td>AVERAGE STRUCTURE HEIGHT:</td>
<td>90'</td>
</tr>
<tr>
<td>I.</td>
<td>AVERAGE SPAN LENGTH:</td>
<td>646' (501' - 853')</td>
</tr>
<tr>
<td>J.</td>
<td>MINIMUM CONDUCTOR-TO-GROUND:</td>
<td>22.5' (AT MAX OPERATING TEMPERATURE)</td>
</tr>
</tbody>
</table>

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.36 MILES (2)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 66'
 AVERAGE STRUCTURE HEIGHT: 63'
I. AVERAGE SPAN LENGTH: 476' (406'-500')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
SECTION 3: STRUCTURES 15 - 18

PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.36 MILES (2)
D. STRUCTURE MATERIAL:
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 65'
I. AVERAGE SPAN LENGTH: 476' (406' - 500')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.27 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS
 ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY’S STANDARD FOR DIRECT EMBED
 H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 70'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 70'
I. AVERAGE SPAN LENGTH: 479' (438' - 505')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO
 CHANGE DURING FINAL ENGINEERING.
 2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND
 TERRAIN AT INDIVIDUAL POLE LOCATION.
 3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
 4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.27 MILES (2)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 60'
 AVERAGE STRUCTURE HEIGHT: 60'
I. AVERAGE SPAN LENGTH: 479' (438' - 505')
J. MINIMUM CONDUCTOR-TO-GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.85 MILES (5)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 67'
I. AVERAGE SPAN LENGTH: 563' (463' - 674')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.85 MILES (3)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 63'
I. AVERAGE SPAN LENGTH: 563' (463' - 674')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.58 MILES (4)

D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.

E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED

F. AVERAGE WIDTH AT CROSSARM: 42'

G. AVERAGE WIDTH AT BASE: 21'

H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 75'
 AVERAGE STRUCTURE HEIGHT: 67'

I. AVERAGE SPAN LENGTH: 611' (513'-815')

J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.58 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 60'
 AVERAGE STRUCTURE HEIGHT: 60'
I. AVERAGE SPAN LENGTH: 611' (513' - 815')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE:
 RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY):
 1.57 MILES (10)

D. STRUCTURE MATERIAL:
 WEATHERING STEEL POLES & GALVANIZED STEEL CROSS
 ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL:
 THE COMPANY'S STANDARD FOR DIRECT EMBED
 H-FRAME CONSTRUCTION IS WEATHERING STEEL.

E. FOUNDATION MATERIAL:
 N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL:
 N/A - DIRECT EMBED

F. AVERAGE WIDTH AT CROSSARM:
 42'

G. AVERAGE WIDTH AT BASE:
 21'

H. MINIMUM STRUCTURE HEIGHT:
 66'
 MAXIMUM STRUCTURE HEIGHT:
 79'
 AVERAGE STRUCTURE HEIGHT:
 72'

I. AVERAGE SPAN LENGTH:
 552' (240' - 797')

J. MINIMUM CONDUCTOR-TO-GROUND:
 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO
 CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND
 TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT ANGLE (20 - 60 DEG)

3-POLE DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE:	RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY):	1.57 MILES (2)
D. STRUCTURE MATERIAL:	WEATHERING STEEL
E. FOUNDATION MATERIAL:	CONCRETE
F. AVERAGE WIDTH AT CROSSARM:	N/A
G. AVERAGE WIDTH AT BASE:	40’
H. MINIMUM STRUCTURE HEIGHT:	65’
MAXIMUM STRUCTURE HEIGHT:	65’
AVERAGE STRUCTURE HEIGHT:	65’
I. AVERAGE SPAN LENGTH:	552’ (240’ - 797’)
J. MINIMUM CONDUCTOR -TO- GROUND:	22.5’ (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5’, MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 8: STRUCTURES 42 - 56

PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.57 MILES (3)

D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE

E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.

F. AVERAGE WIDTH AT CROSSARM: 47'

G. AVERAGE WIDTH AT BASE: 24'

H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 65'

I. AVERAGE SPAN LENGTH: 552' (240' - 797')

J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 9: STRUCTURES 57 - 77

PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.47 MILES (18)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY’S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
F. AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
G. AVERAGE WIDTH AT CROSSARM: 42'
H. AVERAGE WIDTH AT BASE: 21'
I. MINIMUM STRUCTURE HEIGHT: 66'
 MAXIMUM STRUCTURE HEIGHT: 88'
 AVERAGE STRUCTURE HEIGHT: 75'
J. AVERAGE SPAN LENGTH: 621' (377' - 1023')
K. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES.
SECTION 9: STRUCTURES 57 - 77

PROPOSED SINGLE CIRCUIT ANGLE (20 - 60 DEG)
3-POLE DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE:
 RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY):
 2.47 MILES (1)

D. STRUCTURE MATERIAL:
 WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL:
 TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE

E. FOUNDATION MATERIAL:
 CONCRETE
 AVERAGE FOUNDATION REVEAL:
 SEE NOTE 3.

F. AVERAGE WIDTH AT CROSSARM:
 N/A

G. AVERAGE WIDTH AT BASE:
 40'

H. MINIMUM STRUCTURE HEIGHT:
 65'
 MAXIMUM STRUCTURE HEIGHT:
 65'
 AVERAGE STRUCTURE HEIGHT:
 65'

I. AVERAGE SPAN LENGTH:
 621' (377' - 1023')

J. MINIMUM CONDUCTOR -TO- GROUND:
 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.47 MILES (2)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 60'
 AVERAGE STRUCTURE HEIGHT: 60'
I. AVERAGE SPAN LENGTH: 621' (377' - 1023')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.38 MILES (11)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 66'
 MAXIMUM STRUCTURE HEIGHT: 84'
 AVERAGE STRUCTURE HEIGHT: 73'
I. AVERAGE SPAN LENGTH: 606' (389' - 878')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
SECTION 10: STRUCTURES 78 - 89

PROPOSED SINGLE CIRCUIT ANGLE (20 - 60 DEG)
3-POLE DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.38 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 40'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 60'
 AVERAGE STRUCTURE HEIGHT: 60'
I. AVERAGE SPAN LENGTH: 606' (389' - 878')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.16 MILES (11)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 67'
I. AVERAGE SPAN LENGTH: 508' (275' - 768')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.16 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT:
 MAXIMUM STRUCTURE HEIGHT:
 AVERAGE STRUCTURE HEIGHT: 75'
I. AVERAGE SPAN LENGTH: 508' (275' - 768')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 12: STRUCTURES 102 - 123

PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.30 MILES (15)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 88'
 AVERAGE STRUCTURE HEIGHT: 74'
I. AVERAGE SPAN LENGTH: 552' (257' - 876')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT 3-POLE RUNNING ANGLE STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.30 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 42'
H. MINIMUM STRUCTURE HEIGHT: 75'
 MAXIMUM STRUCTURE HEIGHT: 75'
 AVERAGE STRUCTURE HEIGHT: 75'
I. AVERAGE SPAN LENGTH: 552' (257' - 876')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.30 MILES (4)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 70'
 MAXIMUM STRUCTURE HEIGHT: 75'
 AVERAGE STRUCTURE HEIGHT: 71'
I. AVERAGE SPAN LENGTH: 552' (257' - 876')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 12: STRUCTURES 102 - 123

PROPOSE TO REUSE EXISTING DOUBLE CIRCUIT LATTICE SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: N/A - EXISTING
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.30 MILES (2)
D. STRUCTURE MATERIAL: GALVANIZED STEEL
 RATIONALE FOR STRUCTURE MATERIAL: N/A - EXISTING
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 2
F. AVERAGE WIDTH AT CROSSARM: 36'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 106'
 MAXIMUM STRUCTURE HEIGHT: 106'
 AVERAGE STRUCTURE HEIGHT: 106'
I. AVERAGE SPAN LENGTH: 552' (257' - 876')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
2. EXISTING FOUNDATION REVEAL MAY VARY AT EACH LEG LOCATION DUE TO TERRAIN.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.52 MILES (3)

D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS
 ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED
 H-FRAME CONSTRUCTION IS WEATHERING STEEL.

E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED

F. AVERAGE WIDTH AT CROSSARM: 42'

G. AVERAGE WIDTH AT BASE: 21'

H. MINIMUM STRUCTURE HEIGHT: 75'
 MAXIMUM STRUCTURE HEIGHT: 75'
 AVERAGE STRUCTURE HEIGHT: 75'

I. AVERAGE SPAN LENGTH: 554' (342' - 707')

J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO
 CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND
 TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT 3-POLE RUNNING ANGLE STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES

C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.52 MILES (1)

D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE

E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.

F. AVERAGE WIDTH AT CROSSARM: N/A

G. AVERAGE WIDTH AT BASE: 42'

H. MINIMUM STRUCTURE HEIGHT: 70'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 70'

I. AVERAGE SPAN LENGTH: 554' (342' - 707')

J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 13: STRUCTURES 128 - 132

PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 0.52 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 65'
 MAXIMUM STRUCTURE HEIGHT: 65'
 AVERAGE STRUCTURE HEIGHT: 65'
I. AVERAGE SPAN LENGTH: 554' (342' - 707')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.53 MILES (11)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 57'
 MAXIMUM STRUCTURE HEIGHT: 79'
 AVERAGE STRUCTURE HEIGHT: 69'
I. AVERAGE SPAN LENGTH: 540' (315' - 1001')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES.
PROPOSED SINGLE CIRCUIT 3-POLE RUNNING ANGLE STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.53 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 42'
H. MINIMUM STRUCTURE HEIGHT: 65'
 MAXIMUM STRUCTURE HEIGHT: 65'
 AVERAGE STRUCTURE HEIGHT: 65'
I. AVERAGE SPAN LENGTH: 540' (315' - 1001')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 1.53 MILES (3)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 55'
 MAXIMUM STRUCTURE HEIGHT: 70'
 AVERAGE STRUCTURE HEIGHT: 62'
I. AVERAGE SPAN LENGTH: 540' (315' - 1001')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 15: STRUCTURES 148 - 171

PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 3.02 MILES (22)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY’S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 70'
 MAXIMUM STRUCTURE HEIGHT: 79'
 AVERAGE STRUCTURE HEIGHT: 74'
I. AVERAGE SPAN LENGTH: 663' (509' - 772')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
SECTION 15: STRUCTURES 148 - 171

PROPOSED SINGLE CIRCUIT 3-POLE RUNNING ANGLE STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 3.02 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 42'
H. MINIMUM STRUCTURE HEIGHT: 60'
 MAXIMUM STRUCTURE HEIGHT: 60'
 AVERAGE STRUCTURE HEIGHT: 60'
I. AVERAGE SPAN LENGTH: 663' (509' - 772')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 3.02 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47’
G. AVERAGE WIDTH AT BASE: 24’
H. MINIMUM STRUCTURE HEIGHT: 65’
 MAXIMUM STRUCTURE HEIGHT: 65’
 AVERAGE STRUCTURE HEIGHT: 65’
I. AVERAGE SPAN LENGTH: 663’ (509’ - 772’)
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5’ (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5’, MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.70 MILES (18)
D. STRUCTURE MATERIAL: WEATHERING STEEL POLES & GALVANIZED STEEL CROSS ARM & CROSS BRACING
 RATIONALE FOR STRUCTURE MATERIAL: THE COMPANY'S STANDARD FOR DIRECT EMBED H-FRAME CONSTRUCTION IS WEATHERING STEEL.
E. FOUNDATION MATERIAL: N/A - DIRECT EMBED (SEE NOTE 4)
 AVERAGE FOUNDATION REVEAL: N/A - DIRECT EMBED
F. AVERAGE WIDTH AT CROSSARM: 42'
G. AVERAGE WIDTH AT BASE: 21'
H. MINIMUM STRUCTURE HEIGHT: 61'
 MAXIMUM STRUCTURE HEIGHT: 79'
 AVERAGE STRUCTURE HEIGHT: 71'
I. AVERAGE SPAN LENGTH: 541' (341' - 852')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS ABOVE GRADE MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
4. IN WETLAND OR SWAMP AREAS - DIRECT EMBED INTO STEEL PIPE PILES
PROPOSED SINGLE CIRCUIT ANGLE (20 - 60 DEG)

3-POLE DOUBLE DEAD END STRUCTURE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B. RATIONALE FOR STRUCTURE TYPE:</td>
<td>RESEMBLES GEOMETRY OF EXISTING FACILITIES</td>
</tr>
<tr>
<td>C. LENGTH OF R/W (STRUCTURE QUANTITY):</td>
<td>2.70 MILES (1)</td>
</tr>
<tr>
<td>D. STRUCTURE MATERIAL:</td>
<td>WEATHERING STEEL</td>
</tr>
<tr>
<td>RATIONALE FOR STRUCTURE MATERIAL:</td>
<td>TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE</td>
</tr>
<tr>
<td>E. FOUNDATION MATERIAL:</td>
<td>CONCRETE</td>
</tr>
<tr>
<td>AVERAGE FOUNDATION REVEAL:</td>
<td>SEE NOTE 3.</td>
</tr>
<tr>
<td>F. AVERAGE WIDTH AT CROSSARM:</td>
<td>N/A</td>
</tr>
<tr>
<td>G. AVERAGE WIDTH AT BASE:</td>
<td>40'</td>
</tr>
<tr>
<td>H. MINIMUM STRUCTURE HEIGHT:</td>
<td>75'</td>
</tr>
<tr>
<td>MAXIMUM STRUCTURE HEIGHT:</td>
<td>75'</td>
</tr>
<tr>
<td>AVERAGE STRUCTURE HEIGHT:</td>
<td>75'</td>
</tr>
<tr>
<td>I. AVERAGE SPAN LENGTH:</td>
<td>541' (341' - 852')</td>
</tr>
<tr>
<td>J. MINIMUM CONDUCTOR -TO- GROUND:</td>
<td>22.5' (AT MAX OPERATING TEMPERATURE)</td>
</tr>
</tbody>
</table>

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT 3-POLE RUNNING ANGLE STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.70 MILES (1)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: N/A
G. AVERAGE WIDTH AT BASE: 42'
H. MINIMUM STRUCTURE HEIGHT: 65'
 MAXIMUM STRUCTURE HEIGHT: 65'
 AVERAGE STRUCTURE HEIGHT: 65'
I. AVERAGE SPAN LENGTH: 541' (341' - 852')
J. MINIMUM CONDUCTOR-TO-GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
PROPOSED SINGLE CIRCUIT H-FRAME DOUBLE DEAD END STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: RESEMBLES GEOMETRY OF EXISTING FACILITIES
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.70 MILES (4)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 3.
F. AVERAGE WIDTH AT CROSSARM: 47'
G. AVERAGE WIDTH AT BASE: 24'
H. MINIMUM STRUCTURE HEIGHT: 55'
 MAXIMUM STRUCTURE HEIGHT: 80'
 AVERAGE STRUCTURE HEIGHT: 66'
I. AVERAGE SPAN LENGTH: 541' (341' - 852')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE:
1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. INDIVIDUAL POLE HEIGHTS MAY VARY, SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL POLE LOCATION.
3. MINIMUM FOUNDATION REVEAL SHALL BE 1.5', MAXIMUM REVEAL SUBJECT TO FINAL LOCATION AND TERRAIN AT INDIVIDUAL FOUNDATION LOCATION.
4. STRUCTURE HEIGHTS ARE MEASURED FROM STRUCTURE CENTERLINE.
SECTION 16: STRUCTURES 172 - 197

230KV CIRCUIT LINE #217

DISTRIBUTION CIRCUIT

PROPOSED DOUBLE CIRCUIT 1-POLE SUSPENSION STRUCTURE

B. RATIONALE FOR STRUCTURE TYPE: MAINTAINS VERTICAL CONDUCTOR CONFIGURATION
C. LENGTH OF R/W (STRUCTURE QUANTITY): 2.70 MILES (2)
D. STRUCTURE MATERIAL: WEATHERING STEEL
 RATIONALE FOR STRUCTURE MATERIAL: TO MATCH THE MATERIAL SELECTED FOR THE TYPICAL (H-FRAME) STRUCTURE
E. FOUNDATION MATERIAL: CONCRETE
 AVERAGE FOUNDATION REVEAL: SEE NOTE 2
F. AVERAGE WIDTH AT CROSSARM: 26'
G. AVERAGE WIDTH AT BASE: 6' DIAMETER FOUNDATION (SEE NOTE 3)
H. MINIMUM STRUCTURE HEIGHT: 135'
 MAXIMUM STRUCTURE HEIGHT: 145'
 AVERAGE STRUCTURE HEIGHT: 140'
I. AVERAGE SPAN LENGTH: 541' (341' - 852')
J. MINIMUM CONDUCTOR -TO- GROUND: 22.5' (AT MAX OPERATING TEMPERATURE)

NOTE: 1. INFORMATION CONTAINED ON DRAWING IS PRELIMINARY IN NATURE AND SUBJECT TO CHANGE DURING FINAL ENGINEERING.
2. MINIMUM FOUNDATION REVEAL SHALL BE 1.5'.
3. MAXIMUM FOUNDATION DIAMETER SHALL BE BASED UPON FINAL LOCATION AND STRUCTURE LOADING.
II. DESCRIPTION OF THE PROPOSED PROJECT

B. Line Design and Operational Features

4. With regard to the proposed supporting structures for all feasible alternate routes, provide the maximum, minimum and average structure heights with respect to the whole route.

Response: Not applicable.
II. DESCRIPTION OF THE PROPOSED PROJECT

B. Line Design and Operational Features

5. For lines being rebuilt, provide mapping showing existing and proposed structure heights for each individual structure within the ROW, as proposed in the application.

Response: See Attachment II.A.2 for mapping showing the location of existing and proposed structures. See Attachments II.B.5.a and b for the existing and proposed structure heights for each structure on Line #217 and Line #287, respectively. Information on proposed structure heights is preliminary in nature and subject to change during final engineering.
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structure Type</td>
<td>Pole Material</td>
</tr>
<tr>
<td>1</td>
<td>217/1</td>
<td>CHESTERFIELD POWER STATION PROPERTY</td>
<td>0.32</td>
<td>65</td>
<td>BACKBONE</td>
</tr>
<tr>
<td>2</td>
<td>217/1A</td>
<td></td>
<td></td>
<td>96</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>3</td>
<td>217/2*</td>
<td></td>
<td></td>
<td>95</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>4</td>
<td>217/3</td>
<td></td>
<td></td>
<td>45</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>5</td>
<td>217/4</td>
<td></td>
<td></td>
<td>71</td>
<td>TOWER</td>
</tr>
<tr>
<td>6</td>
<td>217/5</td>
<td></td>
<td></td>
<td>212</td>
<td>TOWER</td>
</tr>
<tr>
<td>7</td>
<td>217/6</td>
<td>SECTION 1</td>
<td>0.40</td>
<td>212</td>
<td>TOWER</td>
</tr>
<tr>
<td>8</td>
<td>217/7</td>
<td></td>
<td></td>
<td>96</td>
<td>TOWER</td>
</tr>
<tr>
<td>9</td>
<td>217/8</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>10</td>
<td>217/9</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>11</td>
<td>217/10</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>12</td>
<td>217/11</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>13</td>
<td>217/12</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>14</td>
<td>217/13</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>15</td>
<td>217/14</td>
<td></td>
<td></td>
<td>84</td>
<td>3 POLE</td>
</tr>
<tr>
<td>16</td>
<td>217/15</td>
<td>SECTION 2</td>
<td>0.86</td>
<td>65</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>17</td>
<td>217/16</td>
<td></td>
<td></td>
<td>53</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>18</td>
<td>217/17</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>19</td>
<td>217/18</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>20</td>
<td>217/19</td>
<td>SECTION 3</td>
<td>0.36</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>21</td>
<td>217/20</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>22</td>
<td>217/21</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>23</td>
<td>217/22</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>24</td>
<td>217/23</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>25</td>
<td>217/24</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>26</td>
<td>217/25</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>27</td>
<td>217/26</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>28</td>
<td>217/27</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>29</td>
<td>217/28</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>30</td>
<td>217/29</td>
<td></td>
<td></td>
<td>63</td>
<td>H-FRAME</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering
LINE #217

<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structure Type</td>
<td>Pole Material</td>
</tr>
<tr>
<td>31</td>
<td>217/30</td>
<td>SECTION 6</td>
<td>0.58</td>
<td>65</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>32</td>
<td>217/31</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>33</td>
<td>217/32</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>34</td>
<td>217/33</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>35</td>
<td>217/34</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>36</td>
<td>217/35</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>37</td>
<td>217/36</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>38</td>
<td>217/37</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>39</td>
<td>217/38</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>40</td>
<td>217/39</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>41</td>
<td>217/40</td>
<td></td>
<td></td>
<td>52</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>42</td>
<td>217/41</td>
<td></td>
<td></td>
<td>56</td>
<td>3 POLE</td>
</tr>
<tr>
<td>43</td>
<td>217/42</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>44</td>
<td>217/43</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>45</td>
<td>217/44</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>46</td>
<td>217/45</td>
<td></td>
<td></td>
<td>69</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>47</td>
<td>217/46</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>48</td>
<td>217/47</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>49</td>
<td>217/48</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>50</td>
<td>217/49</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>51</td>
<td>217/50</td>
<td></td>
<td></td>
<td>65</td>
<td>3 POLE</td>
</tr>
<tr>
<td>52</td>
<td>217/51</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>53</td>
<td>217/52</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>54</td>
<td>217/53</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>55</td>
<td>217/54</td>
<td></td>
<td></td>
<td>51</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>56</td>
<td>217/55</td>
<td></td>
<td></td>
<td>71</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>57</td>
<td>217/56</td>
<td></td>
<td></td>
<td>51</td>
<td>3 POLE</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering.
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approximate Structure Height Above Foundation (ft)</td>
<td>Structure Type</td>
</tr>
<tr>
<td>58</td>
<td>217/57</td>
<td>SECTION 9 2.47</td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>59</td>
<td>217/58</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>60</td>
<td>217/59</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>61</td>
<td>217/60</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>62</td>
<td>217/61</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>63</td>
<td>217/62</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>64</td>
<td>217/63</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>65</td>
<td>217/64</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>66</td>
<td>217/65</td>
<td></td>
<td></td>
<td>58</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>67</td>
<td>217/66</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>68</td>
<td>217/67</td>
<td></td>
<td></td>
<td>63</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>69</td>
<td>217/68</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>70</td>
<td>217/69</td>
<td></td>
<td></td>
<td>63</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>71</td>
<td>217/70</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>72</td>
<td>217/71</td>
<td></td>
<td></td>
<td>80</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>73</td>
<td>217/72</td>
<td></td>
<td></td>
<td>70</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>74</td>
<td>217/73</td>
<td></td>
<td></td>
<td>70</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>75</td>
<td>217/74</td>
<td></td>
<td></td>
<td>71</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>76</td>
<td>217/75</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>77</td>
<td>217/76</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>78</td>
<td>217/77</td>
<td></td>
<td></td>
<td>59</td>
<td>3 POLE</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and
Subject to change during Final engineering
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structure Height Above Foundation (ft)</td>
<td>Structure Type</td>
</tr>
<tr>
<td>79</td>
<td>217/78</td>
<td>SECTION 10</td>
<td>1.38</td>
<td>52</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>80</td>
<td>217/79</td>
<td>52</td>
<td>H-FRAME</td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>81</td>
<td>217/80</td>
<td>75</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>82</td>
<td>217/81</td>
<td>61</td>
<td>H-FRAME</td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>83</td>
<td>217/82</td>
<td>62</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>84</td>
<td>217/83</td>
<td>66</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>85</td>
<td>217/84</td>
<td>62</td>
<td>H-FRAME</td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>86</td>
<td>217/85</td>
<td>62</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>87</td>
<td>217/86</td>
<td>62</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>88</td>
<td>217/87</td>
<td>66</td>
<td>H-FRAME</td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>89</td>
<td>217/88</td>
<td>62</td>
<td>H-FRAME</td>
<td>55</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>90</td>
<td>217/89</td>
<td>55</td>
<td>H-FRAME</td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>91</td>
<td>217/90</td>
<td>62</td>
<td>H-FRAME</td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>92</td>
<td>217/91</td>
<td>60</td>
<td>H-FRAME</td>
<td>60</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>93</td>
<td>217/92</td>
<td>64</td>
<td>H-FRAME</td>
<td>64</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>94</td>
<td>217/93</td>
<td>63</td>
<td>H-FRAME</td>
<td>63</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>95</td>
<td>217/94</td>
<td>62</td>
<td>H-FRAME</td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>96</td>
<td>217/95</td>
<td>56</td>
<td>H-FRAME</td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>97</td>
<td>217/96</td>
<td>57</td>
<td>H-FRAME</td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>98</td>
<td>217/97</td>
<td>66</td>
<td>H-FRAME</td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>99</td>
<td>217/98</td>
<td>66</td>
<td>H-FRAME</td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>100</td>
<td>217/99</td>
<td>66</td>
<td>H-FRAME</td>
<td>57</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>101</td>
<td>217/100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>102</td>
<td>217/100A</td>
<td>61</td>
<td>H-FRAME</td>
<td>61</td>
<td>H-FRAME</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering
LINE #217

<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Approximate Structure Height Above Foundation (ft)</td>
<td>Structure Type</td>
</tr>
<tr>
<td>104</td>
<td>217/101A</td>
<td>CHARLES CITY RD</td>
<td>0.05</td>
<td>60</td>
<td>BACKBONE</td>
</tr>
<tr>
<td>105</td>
<td>217/102</td>
<td>SUBSTATION PROPERTY</td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>106</td>
<td>217/102A</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>107</td>
<td>217/103</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>108</td>
<td>217/104</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>109</td>
<td>217/105</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>110</td>
<td>217/106</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>111</td>
<td>217/107</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>112</td>
<td>217/108</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>113</td>
<td>217/109</td>
<td></td>
<td></td>
<td>52</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>114</td>
<td>217/110</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>115</td>
<td>217/111</td>
<td>SECTION 12</td>
<td>2.30</td>
<td>106</td>
<td>TOWER</td>
</tr>
<tr>
<td>116</td>
<td>217/112</td>
<td></td>
<td></td>
<td>106</td>
<td>TOWER</td>
</tr>
<tr>
<td>117</td>
<td>217/113</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>118</td>
<td>217/114</td>
<td></td>
<td></td>
<td>69</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>119</td>
<td>217/115</td>
<td></td>
<td></td>
<td>59</td>
<td>3 POLE RA</td>
</tr>
<tr>
<td>120</td>
<td>217/116</td>
<td></td>
<td></td>
<td>64</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>121</td>
<td>217/117</td>
<td></td>
<td></td>
<td>69</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>122</td>
<td>217/118</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>123</td>
<td>217/119</td>
<td></td>
<td></td>
<td>67</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>124</td>
<td>217/120</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>125</td>
<td>217/121</td>
<td></td>
<td></td>
<td>51</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>126</td>
<td>217/122</td>
<td></td>
<td></td>
<td>64</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>127</td>
<td>217/123</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering
LINE #217

<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>Approximate Structure Height Above Foundation (ft)</th>
<th>Structure Type</th>
<th>Pole Material</th>
<th>Approximate Structure Height Above Foundation (ft)</th>
<th>Structure Type</th>
<th>Pole Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>217/124</td>
<td>NORTHEAST SUBSTATION PROPERTY</td>
<td>0.31</td>
<td>60</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>60</td>
<td>3 POLE DDE</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>129</td>
<td>217/125</td>
<td>BACKBONE GALVANIZED STL</td>
<td>95</td>
<td>95</td>
<td>BACKBONE</td>
<td>GALVANIZED STL</td>
<td>95</td>
<td>BACKBONE</td>
<td>GALVANIZED STL</td>
</tr>
<tr>
<td>130</td>
<td>217/126</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>53</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>60</td>
<td>3 POLE DDE</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>131</td>
<td>217/127</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>67</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>132</td>
<td>217/128</td>
<td>3 POLE</td>
<td>WOOD</td>
<td>70</td>
<td>3 POLE</td>
<td>WOOD</td>
<td>70</td>
<td>3 POLE RA</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>133</td>
<td>217/129</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>62</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>134</td>
<td>217/130</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>135</td>
<td>217/131</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>61</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>136</td>
<td>217/132</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>61</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>65</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>137</td>
<td>217/133</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>60</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>138</td>
<td>217/134</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>62</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>139</td>
<td>217/135</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>140</td>
<td>217/136</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>141</td>
<td>217/137</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>55</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>142</td>
<td>217/138</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>143</td>
<td>217/139</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>51</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>55</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>144</td>
<td>217/140</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>52</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>145</td>
<td>217/141</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>65</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>146</td>
<td>217/142</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>57</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>147</td>
<td>217/143</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>62</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>148</td>
<td>217/144</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>149</td>
<td>217/145</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>70</td>
<td>H-FRAME</td>
<td>WOOD</td>
<td>79</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>150</td>
<td>217/146</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>64</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>79</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>151</td>
<td>217/147</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>56</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>65</td>
<td>3 POLE RA</td>
<td>WEATHERING STL</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property
Information Provided is Preliminary in Nature and Subject to change during Final engineering
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th></th>
<th>Approximate Structure Height Above Foundation (ft)</th>
<th>Structure Type</th>
<th>Pole Material</th>
<th>PROPOSED</th>
<th></th>
<th>Approximate Structure Height Above Foundation (ft)</th>
<th>Structure Type</th>
<th>Pole Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>217/148</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>217/149</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>217/150</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>217/151</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>217/152</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>79</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>217/153</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>79</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>217/154</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>79</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>217/155</td>
<td></td>
<td></td>
<td>68</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>217/156</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>217/157</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>217/158</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>217/159</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>217/160</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>217/161</td>
<td></td>
<td></td>
<td>55</td>
<td>3 POLE</td>
<td>WEATHERING STL</td>
<td>60</td>
<td>3 POLE RA</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>217/162</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>217/163</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>217/164</td>
<td></td>
<td></td>
<td>64</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>217/165</td>
<td></td>
<td></td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>217/166</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>217/167</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>217/168</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>217/169</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>217/170</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>75</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>217/171</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td>65</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th></th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structure Height Above Foundation (ft)</td>
<td>Structure Type</td>
<td>Pole Material</td>
</tr>
<tr>
<td>176</td>
<td>217/172</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>177</td>
<td>217/173</td>
<td></td>
<td></td>
<td>54</td>
<td>3 POLE</td>
<td>WOOD</td>
</tr>
<tr>
<td>178</td>
<td>217/174</td>
<td></td>
<td></td>
<td>60</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>179</td>
<td>217/175</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>180</td>
<td>217/176</td>
<td></td>
<td></td>
<td>57</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>181</td>
<td>217/177</td>
<td></td>
<td></td>
<td>70</td>
<td>H-FRAME</td>
<td>WEATHERING STL</td>
</tr>
<tr>
<td>182</td>
<td>217/178</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>183</td>
<td>217/179</td>
<td></td>
<td></td>
<td>52</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>184</td>
<td>217/180</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>185</td>
<td>217/181</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>186</td>
<td>217/182</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>187</td>
<td>217/183</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>188</td>
<td>217/184</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>189</td>
<td>217/185</td>
<td></td>
<td></td>
<td>61</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>190</td>
<td>217/186</td>
<td></td>
<td></td>
<td>56</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>191</td>
<td>217/187</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>192</td>
<td>217/188</td>
<td></td>
<td></td>
<td>135</td>
<td>TOWER</td>
<td>GALVANIZED STL</td>
</tr>
<tr>
<td>193</td>
<td>217/189</td>
<td></td>
<td></td>
<td>145</td>
<td>TOWER</td>
<td>GALVANIZED STL</td>
</tr>
<tr>
<td>194</td>
<td>217/190</td>
<td></td>
<td></td>
<td>67</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>195</td>
<td>217/191</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>196</td>
<td>217/192</td>
<td></td>
<td></td>
<td>62</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>197</td>
<td>217/193</td>
<td></td>
<td></td>
<td>66</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>198</td>
<td>217/194</td>
<td></td>
<td></td>
<td>65</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>199</td>
<td>217/195</td>
<td></td>
<td></td>
<td>75</td>
<td>H-FRAME</td>
<td>WOOD</td>
</tr>
<tr>
<td>200</td>
<td>217/196</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>201</td>
<td>217/197</td>
<td></td>
<td></td>
<td>79</td>
<td>3 POLE</td>
<td>WOOD</td>
</tr>
<tr>
<td>202</td>
<td>217/197A</td>
<td>LAKESIDE SUBSTATION PROPERTY</td>
<td>2.70</td>
<td></td>
<td>35</td>
<td>BACKBONE</td>
</tr>
<tr>
<td>203</td>
<td>217/197</td>
<td></td>
<td></td>
<td>75</td>
<td>STATIC POLE</td>
<td>GALVANIZED STL</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
Bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering
<table>
<thead>
<tr>
<th>Row #</th>
<th>Structure #</th>
<th>Location Identifier</th>
<th>Approximate Line Miles</th>
<th>EXISTING</th>
<th>PROPOSED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Structure Height Above Foundation (ft)</td>
<td>Structure Type</td>
</tr>
<tr>
<td>1</td>
<td>1C</td>
<td></td>
<td>0.34</td>
<td>65</td>
<td>BACKBONE</td>
</tr>
<tr>
<td>2</td>
<td>1B</td>
<td></td>
<td></td>
<td>80</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>3</td>
<td>1*</td>
<td>CHESTERFIELD</td>
<td></td>
<td>90</td>
<td>3 POLE</td>
</tr>
<tr>
<td>4</td>
<td>2A*</td>
<td>PROPERTY</td>
<td></td>
<td>61</td>
<td>3 POLE</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>50</td>
<td>H-FRAME</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td>71</td>
<td>TOWER</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td></td>
<td>212</td>
<td>TOWER</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td>212</td>
<td>TOWER</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>SECTION 1</td>
<td>0.40</td>
<td>96</td>
<td>TOWER</td>
</tr>
</tbody>
</table>

* - Existing structure not replaced
bold Font - Existing structure reused
Gray Cell - Company Owned Property

Information Provided is Preliminary in Nature and Subject to change during Final engineering